Source code for kgcnn.io.loader

import keras as ks
import logging
from typing import Union
import numpy as np
from numpy.random import Generator, PCG64
import tensorflow as tf


# Module logger
logging.basicConfig()
module_logger = logging.getLogger(__name__)
module_logger.setLevel(logging.INFO)


[docs]def pad_at_axis(x, pad_width, axis=0, **kwargs): pads = [(0, 0) for _ in range(len(x.shape))] pads[axis] = pad_width return np.pad(x, pad_width=pads, **kwargs)
[docs]def tf_dataset_disjoint_generator( graphs, inputs: Union[list, dict], assignment_to_id: Union[list, dict] = None, assignment_of_indices: Union[list, dict] = None, pos_batch_id: Union[list, dict] = None, pos_subgraph_id: Union[list, dict] = None, pos_count: Union[list, dict] = None, batch_size=32, epochs=None, padded_disjoint=False, shuffle=True, seed=42 ): r"""Make a tensorflow dataset for disjoint graph loading. For the moment only IDs that have their values in inputs can be generated, as the value tensors of e.g. node or edge are used to generate batch IDs. Inputs is a list or dictionary of keras input layer configs. The names of the layers are linked to the properties in `graph` . With `assignment_to_id` and `assignment_of_indices` disjoint indices and attributes can be defined. Their IDs are marked with `pos_batch_id` etc. One must use a name or index for each general split, since for example edge IDs can be used for edge indices, edge attributes and edge relation tensors at the same time. Therefore, one batch ID for edges is enough. One could however assign as many as IDs as there are disjoint graph properties in `graph` . Args: graphs: List of dictionaries with named graph properties. inputs: List or dict of keras input layer configs. assignment_to_id: Assignment of if inputs to disjoint properties to IDs. assignment_of_indices: Assignment of inputs (if they are indices) to their reference. pos_batch_id: Position or name of batch IDs. pos_subgraph_id: Position or name of batch IDs. pos_count: Position or name of batch IDs. batch_size: Batch size. epochs: Expected number of epochs. Only required for padded disjoint. padded_disjoint: If padded disjoint tensors should be generated. shuffle: Whether to shuffle each epoch. seed: Seed for shuffle. Returns: tf.data.Dataset: Tensorflow dataset to load disjoint graphs. """ # Stats on the required dataset. dataset_size = len(graphs) data_index = np.arange(dataset_size) num_inputs = len(inputs) # Check input information for outputspec. is_single_input = False is_list_input = False if isinstance(inputs, list): is_list_input = True output_spec = tuple([tf.TensorSpec(shape=tuple([None] + list(x["shape"])), dtype=x["dtype"]) for x in inputs]) elif isinstance(inputs, dict): if "shape" in inputs and "dtype" in inputs: output_spec = tf.TensorSpec(shape=tuple([None] + list(inputs["shape"])), dtype=inputs["dtype"]) inputs = {0: inputs} is_single_input = True num_inputs = 1 else: output_spec = dict( {i: tf.TensorSpec(shape=tuple([None] + list(x["shape"])), dtype=x["dtype"]) for i, x in inputs.items()}) else: raise ValueError("Inputs must be list or dict of keras input layer kwargs.") # We use a dict for both list and dict input. def _convert_to_dict(container_to_check): if container_to_check is None: return {} if isinstance(container_to_check, (list, tuple)): return {i: x for i, x in enumerate(container_to_check)} if not isinstance(container_to_check, dict): raise ValueError("Must be dict or list for mapping and containers.") return container_to_check inputs = _convert_to_dict(inputs) assignment_to_id = _convert_to_dict(assignment_to_id) assignment_of_indices = _convert_to_dict(assignment_of_indices) pos_batch_id = _convert_to_dict(pos_batch_id) pos_subgraph_id = _convert_to_dict(pos_subgraph_id) pos_count = _convert_to_dict(pos_count) # Fill assignments with Nones if they are not used for input. if len(assignment_to_id) < num_inputs: for key, values in inputs.items(): if key not in assignment_to_id.keys(): assignment_to_id[key] = None if len(assignment_of_indices) < num_inputs: for key, values in inputs.items(): if key not in assignment_of_indices.keys(): assignment_of_indices[key] = None flag_batch_id = {i: None for i in inputs.keys()} for i, x in pos_batch_id.items(): flag_batch_id[x] = i flag_count = {i: None for i in inputs.keys()} for i, x in pos_count.items(): flag_count[x] = i flag_subgraph_id = {i: None for i in inputs.keys()} for i, x in pos_subgraph_id.items(): flag_subgraph_id[x] = i all_flags = [flag_batch_id, flag_count, flag_subgraph_id] is_attributes = {i: True if all([x[i] is None for x in all_flags]) else False for i in inputs.keys()} max_size = {i: [] if assignment_to_id[i] is not None else None for i in inputs.keys()} total_max = {i: [] if assignment_to_id[i] is not None else None for i in inputs.keys()} # We can check the maximum batch size at the beginning or just have a maximum batch size for each epoch. if padded_disjoint: if epochs is None: raise ValueError("Requires number of epochs if `padded_disjoint=True` .") for i in inputs.keys(): if assignment_to_id[i] is None: continue len_list = [len(x[inputs[i]["name"]]) for x in graphs] total_max[i] = max(len_list) rng = Generator(PCG64(seed=seed)) for epoch in range(epochs): max_size_epoch = {i: [] if assignment_to_id[i] is not None else None for i in inputs.keys()} if shuffle: rng.shuffle(data_index) for batch_index in range(0, dataset_size, batch_size): idx = data_index[batch_index:batch_index + batch_size] graphs_batch = [graphs[i] for i in idx] for i in inputs.keys(): if assignment_to_id[i] is None: continue len_list = [len(x[inputs[i]["name"]]) for x in graphs_batch] max_length = sum(len_list) max_size_epoch[i].append(max_length) for i, x in max_size_epoch.items(): if x is not None: max_size[i].append(max(x)) max_size = {i: max(x) if x is not None else None for i, x in max_size.items()} module_logger.info("Max of graph: %s." % total_max) module_logger.info("Padded max of disjoint: %s." % [ x/batch_size if x is not None else None for x in max_size.values()]) data_index = np.arange(dataset_size) rng = Generator(PCG64(seed=seed)) def generator(): if shuffle: rng.shuffle(data_index) for batch_index in range(0, dataset_size, batch_size): idx = data_index[batch_index:batch_index + batch_size] graphs_batch = [graphs[i] for i in idx] out = {i: None for i in inputs.keys()} out_counts = {i: None for i in inputs.keys()} for i in inputs.keys(): if not is_attributes[i]: continue array_list = [x[inputs[i]["name"]] for x in graphs_batch] if assignment_to_id[i] is None: values = np.array(array_list, dtype=inputs[i]["dtype"]) if padded_disjoint: out = pad_at_axis(values, (1, 0), axis=0) out[i] = values else: values = np.concatenate(array_list, axis=0) counts = np.array([len(x) for x in array_list], dtype="int64") ids = assignment_to_id[i] if not padded_disjoint: out[i] = values out_counts[i] = counts else: len_values = len(values) num_pad_required = max_size[i] - len_values + 1 values = pad_at_axis(values, (num_pad_required, 0), axis=0) out[i] = values counts = np.concatenate([np.array([num_pad_required], dtype=counts.dtype), counts], axis=0) out_counts[i] = counts if out[pos_count[ids]] is None: out[pos_count[ids]] = counts if out[pos_batch_id[ids]] is None: out[pos_batch_id[ids]] = np.repeat( np.arange(len(counts), dtype="int64"), repeats=counts) if out[pos_subgraph_id[ids]] is None: out[pos_subgraph_id[ids]] = np.concatenate( [np.arange(x, dtype="int64") for x in counts], axis=0) # Indices for i in inputs.keys(): if assignment_of_indices[i] is not None: edge_indices_flatten = out[i] count_nodes = out_counts[assignment_of_indices[i]] count_edges = out_counts[i] node_splits = np.pad(np.cumsum(count_nodes), [[1, 0]]) offset_edge_indices = np.expand_dims(np.repeat(node_splits[:-1], count_edges), axis=-1) disjoint_indices = edge_indices_flatten + offset_edge_indices disjoint_indices = np.transpose(disjoint_indices) out[i] = disjoint_indices # Match output container if is_list_input: out = tuple([out[i] for i in range(num_inputs)]) if is_single_input: out = out[0] yield out data_loader = tf.data.Dataset.from_generator( generator, output_signature=output_spec ) return data_loader